
On Technical Security Issues in Cloud Computing

Meiko Jensen, Jörg Schwenk

Horst Görtz Institute for IT Security
Ruhr University Bochum, Germany

{meiko.jensen|joerg.schwenk}@rub.de

Nils Gruschka, Luigi Lo Iacono

NEC Laboratories Europe
NEC Europe Ltd.

{nils.gruschka@nw.neclab.eu,
lo_iacono@it.neclab.eu}

Abstract

The Cloud Computing concept offers dynamically
scalable resources provisioned as a service over the
Internet. Economic benefits are the main driver for the
Cloud, since it promises the reduction of capital expen-
diture (CapEx) and operational expenditure (OpEx).
In order for this to become reality, however, there are
still some challenges to be solved. Amongst these are
security and trust issues, since the user’s data has to be
released to the Cloud and thus leaves the protection-
sphere of the data owner. Most of the discussions on
this topics are mainly driven by arguments related to
organisational means. This paper focusses on techni-
cal security issues arising from the usage of Cloud
services and especially by the underlying technologies
used to build these cross-domain Internet-connected
collaborations.

1. Introduction

The new concept of Cloud Computing offers dy-

namically scalable resources provisioned as a service

over the Internet and therefore promises a lot of

economic benefits to be distributed among its adopters.

Depending on the type of resources provided by the

Cloud, distinct layers can be defined (see Figure 1).

The bottom-most layer provides basic infrastructure

components such as CPUs, memory, and storage,

and is henceforth often denoted as Infrastructure-as-

a-Service (IaaS). Amazon’s Elastic Compute Cloud

(EC2) is a prominent example for an IaaS offer. On

top of IaaS, more platform-oriented services allow the

usage of hosting environments tailored to a specific

need. Google App Engine is an example for a Web

platform as as service (PaaS) which enables to deploy

and dynamically scale Python and Java based Web ap-

plications. Finally, the top-most layer provides it users

with ready to use applications also known as Software-

Figure 1. Cloud layers and access technologies

as-a-Service (SaaS). To access these Cloud services,

two main technologies can be currently identified. Web

Services are commonly used to provide access to IaaS

services and Web browsers are used to access SaaS

applications. In PaaS environments both approaches

can be found.

All of these layers come with the promise to reduce

first of all capital expenditures (CapEx). This includes

reduced hardware costs in the IaaS layer and reduced

license costs in all layers. Especially in the IaaS layer it

is not required anymore to engineer the own data center

for peak performance cases, which occur in general

very seldom and which usually result in a poor utiliza-

tion of the available resources. Additionally, reductions

of the operational expenditures (OpEx) in terms of

reduced hardware, license and patch management are

promised as well.

On the other hand, along with these benefits, Cloud

Computing also raises severe concerns especially re-

garding the security level provided by such a concept.

Completely relying the own data and execution tasks

to an external company, eventually residing in another

country with a different regulatory environment, may

cause companies not to consider Cloud Computing but

to stick to the conventional local data center approach.

Although there is a clear demand for in-depth dis-

cussion of security issues in Cloud Computing, the cur-

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

94

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

94

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $25.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

94

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

94

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

102

2009 IEEE International Conference on Cloud Computing

978-0-7695-3840-2/09 $26.00 © 2009 IEEE

DOI 10.1109/CLOUD.2009.60

109



rent surveys on Cloud security issues focus primarily

on data confidentiality, data safety and data privacy

and discuss mostly organizational means to overcome

these issues [1]. In this paper, we provide an overview

on technical security issues of Cloud Computing envi-

ronments. Starting with real-world examples of attacks

performed on Cloud computing systems (here the

Amazon EC2 service), we give an overview of existing

and upcoming threats to Cloud Computing security.

Along with that, we also briefly discuss appropriate

countermeasures to these threats, and further issues

to be considered in future research on the way to

a secure, trustworthy, reliable, and easily applicable

Cloud Computing world.

The paper is organized as follows. In the next

section, we outline the major technologies used in the

context of Cloud Computing and security. Then, in

Section 3, we provide a set of security-related issues

that apply to different Cloud Computing scenarios.

Each issue is briefly described and complemented with

a short sketch on countermeasure approaches that are

both sound and applicable in real-world scenarios. The

paper then concludes in Section 4, also giving future

research directions for Cloud Computing security.

2. Foundations

Various distinct technologies are used and combined

to build Cloud Computing systems. Depending on the

type of Cloud—either IaaS, PaaS or SaaS as defined

above—the access technologies can vary from service-

enabled fat clients to Web browser-based thin clients.

This section provides some required foundations in

order to set the fundament for the subsequently in-

troduced and discussed security issues.

2.1. WS-Security

The most important specification addressing security

for Web Services is WS-Security, defining how to

provide integrity, confidentiality and authentication for

SOAP messages. WS-Security defines a SOAP header

(Security) that carries the WS-Security extensions.

Additionally, it defines how existing XML security

standards like XML Signature and XML Encryption are

applied to SOAP messages.

XML Signature allows XML fragments to be dig-

itally signed to ensure integrity or to proof authen-

ticity. The XML Signature element has the following

(slightly simplified) structure:

<Signature>
<SignedInfo>
<CanonicalizationMethod

Algorithm="..."/>
<SignatureMethod Algorithm="..."/>
<Reference URI="..." >
<DigestMethod Algorithm="...">
<DigestValue>...</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>...</SignatureValue>

</Signature>

The signing process works as follows: For every

message part to be signed a Reference element

is created and this message part is canonicalized

and hashed. The resulting digest is added into the

DigestValue element and a reference to the signed

message part is entered into the URI attribute. Fi-

nally the SignedInfo element is canonicalized and

signed. The result of the signing operation is placed in

the SignatureValue element and the Signature
element is added to the security header.

XML Encryption allows XML fragments to be en-

crypted to ensure data confidentiality. The encrypted

fragment is replaced by an EncryptedData element

containing the ciphertext of the encrypted fragment as

content.

Further, XML Encryption defines an Encrypted-
Key element for key transportation purposes. The

most common application for an encrypted key is

a hybrid encryption: an XML fragment is encrypted

with a randomly generated symmetric key, which itself

is encrypted using the public key of the message

recipient. In SOAP messages, the EncryptedKey
element must appear inside the security header.

In addition to encryption and signatures, WS-

Security defines security tokens suitable for transporta-

tion of digital identities, e.g. X.509 certificates.

2.2. TLS

Transport Layer Security [2] has been introduced,

under its more common name “Secure Sockets Layer

(SSL)”, by Netscape in 1996. It consists of two main

parts: The Record Layer encrypts/decrypts TCP data

streams using the algorithms and keys negotiated in

the TLS Handshake, which is also used to authenticate

the server and optionally the client. Today it is the most

important cryptographic protocol worldwide, since it is

implemented in every web browser.

TLS offers many different options for key agree-

ment, encryption and authentication of network peers,

but most frequently the following configuration is used:

95959595103110



• The Web server is configured with a X.509 certifi-

cate that includes its domain name. This certifi-

cate must be issued from a “trusted” certification

authority (CA), where “trusted” means that the

root certificate of this CA is included in nearly

all Web browsers.

• During the TLS Handshake, the server sends this

certificate to the browser. The browser checks that

the certificate comes from a “trusted” CA, and

that the domain name in the certificate matches

the domain name contained in the requested URL.

If both checks succeed, the browser continues

loading the Web page. If there is a problem, the

human user is asked for a (security) decision.

• The browser itself remains anonymous within this

TLS configuration. To authenticate the user, most

commonly a username/password pair is requested

by the server through an HTML form.

This TLS configuration worked fine for all Web

applications, until the first Phishing attacks surfaced

in 20041. In a Phishing attack, the attacker lures the

victim to a fake Web page (either using spoofed emails

or attacks on the DNS), where the victim enters user-

name and password(s). This is possible even with TLS,

since the human user fails to verify the authentication

of the server via TLS (cf. [3]).

3. Cloud Computing Security Issues

In the following, we present a selection of security

issues related to Cloud Computing. Each issue is

explained briefly and accompanied with a short dis-

cussion on potential or real-world measured impacts.

3.1. XML Signature

A well known type of attacks on protocols us-

ing XML Signature for authentication or integrity

protection is XML Signature Element Wrapping [4]

(henceforth denoted shortly as wrapping attack). This

of course applies to Web Services and therefore also

for Cloud Computing.

Figures 2 and 3 show a simple example for a

wrapping attack to illustrate the concept of this attack.

The first figure presents a SOAP message sent by a

legitimate client. The SOAP body contains a request

for the file “me.jpg” and was signed by the sender. The

signature is enclosed in the SOAP header and refers

to the signed message fragment using an XPointer to

1. Interestingly, these attacks have been described as early as
1996, but these descriptions were ignored both by the bad and the
good guys outside academia.

Figure 2. Example SOAP message with signed
SOAP body

Figure 3. Example SOAP message after attack

the Id attribute with the value “body”. If an attacker

eavesdrops such a message, he can perform the fol-

lowing attack. The original body is moved to a newly

inserted wrapping element (giving the attack its name)

inside the SOAP header, and a new body is created.

This body contains the operation the attacker wants to

perform with the original sender’s authorization, here

the request for the file “cv.doc”. The resulting message

still contains a valid signature of a legitimate user, thus

the service executes the modified request.

Since the discovery of wrapping attacks by McIntosh

and Austel in 2005 a number of further variations,

countermeasures and again attacks circumventing these

countermeasures have be published. For example, in

[5] a method – called inline approach – was introduced

to protect some key properties of the SOAP message

structure and thereby hinder wrapping attacks, but

shortly later in [6] it was shown how to perform a

wrapping attack anyhow.

However, mostly due to the rare usage of WS-

Security in business applications these attacks re-

mained theoretical and no real-life wrapping attack

became public, until in 2008 it was discovered that

Amazon’s EC2 services were vulnerable to wrapping

attacks [7]. Using a variation of the attack presented

before an attacker was able to perform arbitrary EC2

operations on behalf of a legitimate user. In order to

96969696104111



exploit the SOAP message security validation vulner-

ability of EC2, a signed SOAP request of a legitimate,

subscribed user needed to be intercepted. Since the

vulnerability in the SOAP request validation allows to

interfer any kind of operation and have it executed,

it does not matter what kind of request the attacker

has at its disposal. The instantiation of a multitude of

virtual machine to send spam mails is just one example

what an attacker can do—using the legitimated user’s

identity and charging his account.

3.2. Browser Security

In a Cloud, computation is done on remote servers.

The client PC is used for I/O only, and for authenti-

cation and authorization of commands to the Cloud.

It thus does not make sense to develop (platform-

dependent) client software, but to use a universal,

platform independent tool for I/O: a standard Web

browser. This trend has been observed during the last

years, and has been categorized under different names:

Web applications, Web 2.0, or Software-as-a-Service

(SaaS).

Modern Web browsers with their AJAX techniques

(JavaScript, XMLHttpRequest, Plugins) are ideally

suited for I/O. But what about security? A partial

answer is given in [8], where different browser security

policies (with the notable exception of TLS) are com-

pared for the most important browser releases. With a

focus on the Same Origin Policy (SOP), this document

reveals many shortcomings of browser security. If we

additionally take into account TLS, which is used for

host authentication and data encryption, these short-

comings become even more obvious.

Web browsers can not directly make use of XML

Signature or XML Encryption: data can only be en-

crypted through TLS, and signatures are only used

within the TLS handshake. For all other cryptographic

data sets within WS-Security, the browser only serves

as a passive data store. Some simple workarounds have

been proposed to use e.g. TLS encryption instead of

XML Encryption, but major security problems with

this approach have been described in the literature

and working attacks were implemented as proofs-of-

concept (cf. 3.2.2). Our goal is to propose provably

secure solutions using TLS, but at the same time en-

courage the browser community to adapt XML based

cryptography for inclusion in the browser core.

3.2.1. The Legacy Same Origin Policy. With the

inclusion of scripting languages (typically JavaScript)

into Web pages, it became important to define access

rights for these scripts. A natural choice is to allow

read/write operations on content from the same origin,

and to disallow any access to content from a different

origin. This is exactly what the legacy Same Origin

Policy does, where origin is defined as “the same

application”, which can be defined in a Web context

by the tuple (domain name, protocol, port). There

are many special cases where problems with the SOP

occur, but this could be solved if the basic definition

of “origin” was sound. Unfortunately, for a distributed

application like the WWW, this definition is not sound.

In 2008, Dan Kaminski showed that Domain Name

System (DNS) caches can easily be “poisoned”, i.e.

filled with bogus data [9]. Since the DNS heavily relies

on caching, domain names become unreliable. This

attack could only be fixed outside the DNS protocol,

by using UDP source port randomization, to achieve

a moderate level of reliability. Other severe security

problems with DNS have been described in the area

of home routers [10], and in the end this attack vector

renders all content loaded via an URL to be unreliable

unless they are secured by other means.

For Web applications with high security require-

ments, TLS has been used for a long time to pro-

tect both data during transport, and to authenticate

the servers domain name. Problems with this naive

approach became apparent with the advent of Phishing

attacks for online banking, and will be discussed in the

next section.

3.2.2. Attacks on Browser-based Cloud Authenti-
cation. The realization of these security issues within

browser-based protocols with Cloud Computing can

best be explained using Federated Identity Manage-

ment (FIM) protocols: Since the browser itself is

unable to generate cryptographically valid XML tokens

(e.g. SAML tokens) to authenticate against the Cloud,

this is done with the help of a trusted third party.

The prototype for this class of protocols is Mi-

crosoft’s Passport [11], which has been broken by

Slemko [12]. If no direct login is possible at a server

because the browser does not have the necessary

credentials, an HTTP redirect is sent to the Passport

login server, where the user can enter his credentials

(e.g. username/password). The Passport server then

translates this authentication into a Kerberos token,

which is sent to the requesting server through another

HTTP redirect. The main security problem with Pass-

port is that these Kerberos tokens are not bound to the

browser, and that they are only protected by the SOP.

If an attacker can access these tokens, he can access

all services of the victim.

Whereas Passport used a REST type of communi-

cation, its successors MS Cardspace and the SAML

97979797105112



family of protocols definitively belong to the world of

Web Services. However, the same security problems

persist: Groß [13] analyzed SAML browser profiles,

and one of the authors of this paper described an attack

on MS Cardspace [14], [15], which can also be applied

to the SAML browser profiles (both token and artifact

profiles).

To resume: Current browser-based authentication

protocols for the Cloud are not secure, because (a) the

browser is unable to issue XML based security tokens

by itself, and (b) Federated Identity Management sys-

tems store security tokens within the browser, where

they are only protected by the (insecure) SOP.

3.2.3. Secure Browser-based Authentication. How-

ever, the situation is not hopeless: If we integrate TLS

and SOP in a better way, we can secure FIM protocols.

In previous work, we identified four methods to protect

(SAML) tokens with the help of TLS.

• TLS Federation [16]. In this approach, the

SAML token is sent inside an X.509 client cer-

tificate. The SAML token thus replaces other

identification data like distinguished names. The

certificate has the same validity period as the

SAML token.

• SAML 2.0 Holder-of-Key Assertion Profile
[17]. Here again TLS with client authentication is

used, but the client certificate does not transport

any authorization information. Instead, the SAML

token is bound to the public key contained in this

certificate, by including this key in a Holder-of-

Key assertion. For a more detailed analysis on the

security improvements and requirements of this

approach see [18].

• Strong Locked Same Origin Policy [19].
Whereas the previous approaches relied on the

server authenticating (in an anonymous fashion)

the client, in this approach we strengthen the

client to make reliable security decisions. This is

done by using the server’s public key as a basis

for decisions of the Same Origin Policy, rather

than the insecure Domain Name System.

• TLS session binding. By binding the token to a

certain TLS session, the server may deduce that

the data he sends in response to the SAML token

will be protected by the same TLS channel, and

will thus reach the same (anonymous) client who

has previously sent the token.

3.2.4. Future Browser Enhancements. Even with

the workarounds using TLS, the browser is still very

limited in its capacities as an authentication center

for Cloud Computing. Whereas many Web Service

functionalities can be added within the browser by

simply loading an appropriate JavaScript library during

runtime (e.g. to enable the browser to send SOAP

messages), this is not possible for XML Signature

and Encryption, since the cryptographic keys and al-

gorithms require much higher protection2.

Therefore it would be desirable to add the following

two enhancements to the browser security API:

• XML Encryption: Here standard APIs could

easily be adapted, because only a byte stream has

to be encrypted/decrypted, and no knowledge of

XML is necessary. However, a naming scheme to

access cryptographic keys “behind” the API must

be agreed upon. DOM or (mostly) SAX based

processing of XML data can be handled by a

JavaScript library, since the decrypted data will

be stored in the browser and is thus in any case

accessible by a malicious (scripting) code.

• XML Signature: This extension is non-trivial,

because the complete XML Signature data struc-

ture must be checked inside the API. This means

that the complete <ds:Signature> element

must be processed inside the browser core, includ-

ing the transforms on the signed parts, and the

two-step hashing. In addition, countermeasures

against XML wrapping attacks should also be

implemented.

In addition, the API should be powerful enough to

support all standard key agreement methods specified

in WS-Security family of standards natively, since the

resulting keys must be stored directly in the browser.

This could be done e.g. by enhancing known security

APIs, e.g. PKCS#11.

3.3. Cloud Integrity and Binding Issues

A major responsibility of a Cloud Computing system

consists in maintaining and coordinating instances of

virtual machines (IaaS) or explicit service implementa-

tion modules (PaaS). On request of any user, the Cloud

system is responsible for determining and eventually

instantiating a free-to-use instance of the requested

service implementation type. Then, the address for

accessing that new instance is to be communicated

back to the requesting user.

Generally, this task requires some metadata on the

service implementation modules, at least for identifi-

cation purposes. For the specific PaaS case of Web

Services provided via the Cloud, this metadata may

also cover all Web Service description documents

2. Obviously, keys should not be sent or processed in the clear
within a JavaScript library.

98989898106113



related to the specific service implementation. For

instance, the Web Service description document itself

(the WSDL file) should not only be present within the

service implementation instance, but also be provided

by the Cloud system in order to deliver it to its users

on demand.

Most of these metadata descriptions are usually

required by any user prior to service invocation in

order to determine the appropriateness of a service

for a specific purpose. Additionally, these descriptions

also represent some preliminary service identifiers,

as assumably service implementations with identical

WSDL descriptions provide the same functionality.

Thus, these metadata should be stored outside of the

Cloud system, resulting in a necessity to maintain the

correct association of metadata and service implemen-

tation instances.

3.3.1. Cloud Malware Injection Attack. A first con-

siderable attack attempt aims at injecting a malicious

service implementation or virtual machine into the

Cloud system. Such kind of Cloud malware could

serve any particular purpose the adversary is interested

in, ranging from eavesdropping via subtle data modi-

fications to full functionality changes or blockings.

This attack requires the adversary to create its own

malicious service implementation module (SaaS or

PaaS) or virtual machine instance (IaaS), and add it

to the Cloud system. Then, the adversary has to trick

the Cloud system so that it treats the new service

implementation instance as one of the valid instances

for the particular service attacked by the adversary. If

this succeeds, the Cloud system automatically redirects

valid user requests to the malicious service implemen-

tation, and the adversary’s code is executed.

A promising countermeasure approach to this threat

consists in the Cloud system performing a service in-

stance integrity check prior to using a service instance

for incoming requests. This can e.g. be done by storing

a hash value on the original service instance’s image

file and comparing this value with the hash values of all

new service instance images. Thus, an attacker would

be required to trick that hash value comparison in order

to inject his malicious instances into the Cloud system.

3.3.2. Metadata Spoofing Attack. As described in

[20], the metadata spoofing attack aims at maliciously

reengineering a Web Services’ metadata descriptions.

For instance, an adversary may modify a service’s

WSDL so that a call to a deleteUser operation

syntactically looks like a call to another operation, e.g.

setAdminRights. Thus, once a user is given such a

modified WSDL document, each of his deleteUser

operation invocations will result in SOAP messages

that at the server side look like—and thus are in-

terpreted as—invocations of the setAdminRights
operation. In the end, an adversary could manage to

create a bunch of user logins that are thought to be

deleted by the application’s semantics, but in reality

are still valid, and additionally are provided with

administrator level access rights.

For static Web Service invocations, this attack ob-

viously is not so promising for the adversary, as the

task of deriving service invocation code from the

WSDL description usually is done just once, at the

time of client code generation. Thus, the attack here

can only be successful if the adversary manages to

interfere at the one single moment when the service

client’s developer leeches for the service’s WSDL file.

Additionally, the risk of the attack being discovered

assumably is rather high, especially in the presence of

sound testing methods.

These restrictions tend to fall away in the Cloud

Computing scenario. As the Cloud system itself has

some kind of WSDL repository functionality (com-

parable to a UDDI registry [21]), new users most

assumably will gather for a service’s WSDL file more

dynamically. Thus, the potential spread of the ma-

licious WSDL file—and thus the probability for a

successful attack—rises by far.

Similar to the hash value calculation discussed for

the Cloud malware injection attack, in this scenario

a hash-based integrity verification of the metadata

description files prior to usage is required. For instance,

an XML digital signature performed on the WSDL

by the original service implementor would ensure its

integrity. If the WSDL is additionally extended with a

hash value on the service instance’s image file, this also

ensures a cryptographically strong binding between the

WSDL and the original service image.

3.4. Flooding Attacks

A major aspect of Cloud Computing consists in

outsourcing basic operational tasks to a Cloud system

provider. Among these basic tasks, one of the most

important ones is server hardware maintenance. Thus,

instead of operating an own, internal data center,

the paradigm of Cloud Computing enables companies

(users) to rent server hardware on demand (IaaS).

This approach provides valuable economic benefits

when it comes to dynamics in server load, as for

instance day-and-night cycles can be attenuated by

having the data traffic of different timezones operated

by the same servers. Thus, instead of buying sufficient

server hardware for the high workload times, Cloud

99999999107114



Computing enables a dynamic adaptation of hardware

requirements to the actual workload occurring.

Technically, this achievement can be realized by us-

ing virtual machines deployed on arbitrary data center

servers of the Cloud system. If a company’s demand on

computational power rises, it simply is provided with

more instances of virtual machines for its services.

Under security considerations, this architecture has

a serious drawback. Though the feature of providing

more computational power on demand is appreciated

in the case of valid users, it poses severe troubles in

the presence of an attacker. The corresponding threat is

that of flooding attacks, which basically consist in an

attacker sending a huge amount of nonsense requests to

a certain service. As each of these requests has to be

processed by the service implementation in order to

determine its invalidity, this causes a certain amount

of workload per attack request, which—in the case of

a flood of requests—usually would cause a Denial of

Service to the server hardware (cf. [22], [23]).

In the specific case of Cloud Computing systems,

the impact of such a flooding attack is expected to be

amplified drastically. This is due to the different kinds

of impact, which are discussed next.

3.4.1. Direct Denial of Service. When the Cloud

Computing operating system notices the high work-

load on the flooded service, it will start to provide

more computational power (more virtual machines,

more service instances...) to cope with the additional

workload. Thus, the server hardware boundaries for

maximum workload to process do no longer hold.

In that sense, the Cloud system is trying to work

against the attacker (by providing more computational

power), but actually—to some extent—even supports
the attacker by enabling him to do most possible

damage on a service’s availability, starting from a

single flooding attack entry point. Thus, the attacker

does not have to flood all n servers that provide a

certain service in target, but merely can flood a single,

Cloud-based address in order to perform a full loss of

availability on the intended service.

3.4.2. Indirect Denial of Service. Depending on the

computational power in control of the attacker, a side-

effect of the direct flooding attack on a Cloud service

potentially consists in that other services provided

on the same hardware servers may suffer from the

workload caused by the flooding. Thus, if a service

instance happens to run on the same server with

another, flooded service instance, this may affect its

own availability as well. Once the server’s hardware

resources are completely exhausted by processing the

flooding attack requests, obviously also the other ser-

vice instances on the same hardware machine are no

longer able to perform their intended tasks. Thus, the

Denial of Service of the targeted service instances are

likely to cause a Denial of Service on all other services

deployed to the same server hardware as well.

Depending on the level of sophistication of the

Cloud system, this side-effect may worsen if the

Cloud system notices the lack of availability, and tries

to “evacuate” the affected service instances to other

servers. This results in additional workload for those

other servers, and thus the flooding attack “jumps over”

to another service type, and spreads throughout the

whole computing Cloud (see also [24]).

In the worst case, an adversary manages to utilize

another (or the very same) Cloud Computing system

for hosting his flooding attack application. In that case,

the race in power (as defined in [22]) would play

both Cloud systems off against each other; each Cloud

would provide more and more computational resources

for creating, respectively fending, the flood, until one

of them eventually reaches full loss of availability.

3.4.3. Accounting and Accountability. As the major

economic driver behind running a Cloud Computing

service is charging the customers according to their

actual usage (e.g. workload caused), another major

effect of a flooding attack on a Cloud service consists

in raising the bills for Cloud usage drastically. There

are no “upper limits” to computational power usage3,

thus the user running the flooded service most likely

has to foot the bill for the workload caused by the

attacker—at least if the attacker is not determinable

itself (cf. [24]).

4. Conclusion and Future Work

In this paper, we presented a selection of issues of

Cloud Computing security. We investigated ongoing

issues with application of XML Signature and the Web

Services security frameworks (attacking the Cloud

Computing system itself), discussed the importance

and capabilities of browser security in the Cloud Com-

puting context (SaaS), raised concerns about Cloud ser-

vice integrity and binding issues (PaaS), and sketched

the threat of flooding attacks on Cloud systems (IaaS).

As we showed, the threats to Cloud Computing

security are numerous, and each of them requires

an in-depth analysis on their potential impact and

relevance to real-world Cloud Computing scenarios.

3. This holds only as long as there are no appropriate service-
level agreements with upper boundaries between Cloud operators
and users.

100100100100108115



As can be derived from our observations, a first good

starting point for improving Cloud Computing security

consists in strengthening the security capabilities of

both Web browsers and Web Service frameworks, at

best integrating the latter into the first. Thus, as part

of our ongoing work, we will continue to harden

the foundations of Cloud Computing security which

are laid by the underlying tools, specifications, and

protocols employed in the Cloud Computing scenario.

References

[1] J. Heiser and M. Nicolett, “Assessing the security risks
of cloud computing,” Gartner Report, 2009. [Online].
Available: http://www.gartner.com/DisplayDocument?
id=685308

[2] T. Dierks and E. Rescorla, “The Transport Layer Se-
curity (TLS) Protocol Version 1.2,” IETF RFC 5246,
2008, http://www.ietf.org/rfc/rfc5246.txt.

[3] R. Dhamija, J. D. Tygar, and M. A. Hearst, “Why phish-
ing works,” in Proceedings of the 2006 Conference on
Human Factors in Computing Systems (CHI), Montréal,
Québec, Canada. ACM, 2006, pp. 581–590.

[4] M. McIntosh and P. Austel, “XML signature element
wrapping attacks and countermeasures,” in SWS ’05:
Proceedings of the 2005 workshop on Secure web
services. ACM Press, 2005, pp. 20–27.

[5] M. A. Rahaman, A. Schaad, and M. Rits, “Towards
secure SOAP message exchange in a SOA,” in SWS
’06: Proceedings of the 3rd ACM workshop on Secure
Web Services. ACM Press, 2006, pp. 77–84.

[6] S. Gajek, L. Liao, and J. Schwenk, “Breaking and fixing
the inline approach,” in SWS ’07: Proceedings of the
2007 ACM workshop on Secure web services. New
York, NY, USA: ACM, 2007, pp. 37–43.

[7] N. Gruschka and L. Lo Iacono, “Vulnerable Cloud:
SOAP Message Security Validation Revisited,” in ICWS
’09: Proceedings of the IEEE International Conference
on Web Services. Los Angeles, USA: IEEE, 2009.

[8] Google, “Browser security handbook,” 2009. [Online].
Available: http://code.google.com/p/browsersec/

[9] D. Kaminski, “Dns server+client cache poisoning, is-
sues with ssl, breaking *forgot my password* systems,
attacking autoupdaters and unhardened parsers, rerout-
ing internal traffic; http://www.doxpara.com/DMK
BO2K8.ppt,” -, 2008.

[10] S. Stamm, Z. Ramzan, and M. Jakobsson, “Drive-by
pharming,” Indiana University Computer Science, Tech.
Rep. 641, 2006.

[11] D. Kormann and A. Rubin, “Risks of the passport single
signon protocol,” Computer Networks, vol. 33, no. 1–6,
pp. 51–58, 2000.

[12] M. Slemko, “Microsoft passport to trouble,” 2001,
http://alive.znep.com/∼marcs/passport/.

[13] T. Groß, “Security analysis of the SAML single sign-
on browser/artifact profile,” in Proc. 19th Annual Com-
puter Security Applications Conference, 2003.

[14] S. Gajek, J. Schwenk, M. Steiner, and C. Xuan, “Risks
of the cardspace protocol,” in ISC’09: Proceedings
of the 12th Information Security Conference, LNCS.
Springer, 2009.

[15] X. Chen, S. Gajek, and J. Schwenk, “On the Insecurity
of Microsoft’s Identity Metasystem CardSpace,” Horst
Görtz Institute for IT-Security, Tech. Rep. 3, 2008.

[16] B. P. Bruegger, D. Hühnlein, and J. Schwenk, “TLS-
Federation – A secure and Relying-Party-friendly ap-
proach for Federated Identity Management,” in Pro-
ceedings of BIOSIG 2008: Biometrics and Electronic
Signatures, LNI 137, 2008, pp. 93–104.

[17] T. Scavo, “SAML V2.0 Holder-of-Key Assertion Pro-
file,” Working Draft 09, 20.01.2009, 2009, http://www.
oasis-open.org/apps/org/workgroup/security/download.
php/30782/sstc-saml2-holder-of-key-draft-09.pdf.

[18] S. Gajek, T. Jager, M. Manulis, and J. Schwenk, “A
Browser-based Kerberos Authentication Scheme,” in
Computer Security - ESORICS 2008, 13th European
Symposium on Research in Computer Security, Málaga,
Spain, LNCS 5283. Springer, 2008, pp. 115–129.

[19] J. Schwenk, L. Liao, and S. Gajek, “Stronger Bind-
ings for SAML Assertions and SAML Artifacts,” in
Proceedings of the 5th ACM CCS Workshop on Secure
Web Services (SWS’08). ACM Press, 2008.

[20] M. Jensen, N. Gruschka, and R. Herkenhöner, “A
survey of attacks on web services,” Computer Sci-
ence - Research and Development (CSRD), Springer
Berlin/Heidelberg, 2009.

[21] L. Clement, A. Hately, C. von Riegen, and T. Rogers,
“UDDI Version 3.0.2,” OASIS UDDI Spec Technical
Committee Draft, 2004.

[22] M. Jensen, N. Gruschka, and N. Luttenberger, “The Im-
pact of Flooding Attacks on Network-based Services,”
in Proceedings of the IEEE International Conference
on Availability, Reliability and Security (ARES), 2008.

[23] M. Jensen and N. Gruschka, “Flooding Attack Issues
of Web Services and Service-Oriented Architectures,”
in Proceedings of the Workshop on Security for Web
Services and Service-Oriented Architectures (SWSOA,
held at GI Jahrestagung 2008), 2008, pp. 117–122.

[24] M. Jensen and J. Schwenk, “The accountability prob-
lem of flooding attacks in service-oriented architec-
tures,” in Proceedings of the IEEE International Con-
ference on Availability, Reliability and Security (ARES),
2009.

101101101101109116


